The Einstein Theory of Relativity by H.A. Lorentz
page 10 of 24 (41%)
page 10 of 24 (41%)
![]() | ![]() |
|
something to its general appreciation in the following lines.
For centuries Newton's doctrine of the attraction of gravitation has been the most prominent example of a theory of natural science. Through the simplicity of its basic idea, an attraction between two bodies proportionate to their mass and also proportionate to the square of the distance; through the completeness with which it explained so many of the peculiarities in the movement of the bodies making up the solar system; and, finally, through its universal validity, even in the case of the far-distant planetary systems, it compelled the admiration of all. But, while the skill of the mathematicians was devoted to making more exact calculations of the consequences to which it led, no real progress was made in the science of gravitation. It is true that the inquiry was transferred to the field of physics, following Cavendish's success in demonstrating the common attraction between bodies with which laboratory work can be done, but it always was evident that natural philosophy had no grip on the universal power of attraction. While in electric effects an influence exercised by the matter placed between bodies was speedily observed--the starting-point of a new and fertile doctrine of electricity--in the case of gravitation not a trace of an influence exercised by intermediate matter could ever be discovered. It was, and remained, inaccessible and unchangeable, without any connection, apparently, with other phenomena of natural philosophy. Einstein has put an end to this isolation; it is now well established that gravitation affects not only matter, but also light. Thus strengthened in the faith that his theory already has inspired, |
|