The Einstein Theory of Relativity by H.A. Lorentz
page 12 of 24 (50%)
page 12 of 24 (50%)
![]() | ![]() |
|
without setting it in motion. So here was a case comparable with that
of a railroad coach open on all sides. There certainly should have been a powerful "ether wind" blowing through the earth and all our instruments, and it was to have been expected that some signs of it would be noticed in connection with some experiment or other. Every attempt along that line, however, has remained fruitless; all the phenomena examined were evidently independent of the motion of the earth. That this is the way they do function was brought to the front by Einstein in his first or "special" theory of relativity. For him the ether does not function and in the sketch that he draws of natural phenomena there is no mention of that intermediate matter. If the spaces of the universe are filled with an ether, let us suppose with a substance, in which, aside from eventual vibrations and other slight movements, there is never any crowding or flowing of one part alongside of another, then we can imagine fixed points existing in it; for example, points in a straight line, located one meter apart, points in a level plain, like the angles or squares on a chess board extending out into infinity, and finally, points in space as they are obtained by repeatedly shifting that level spot a distance of a meter in the direction perpendicular to it. If, consequently, one of the points is chosen as an "original point" we can, proceeding from that point, reach any other point through three steps in the common perpendicular directions in which the points are arranged. The figures showing how many meters are comprized in each of the steps may serve to indicate the place reached and to distinguish it from any other; these are, as is said, the "co-ordinates" of these places, comparable, for example, with the numbers on a map giving the longitude and latitude. Let us imagine that each point has noted upon it the three numbers that give its position, then we have something comparable with a measure |
|