Book-bot.com - read famous books online for free

The Einstein Theory of Relativity by H.A. Lorentz
page 14 of 24 (58%)
velocity increases in equal degrees in equal consecutive divisions of
time at a rate that in this country gives the velocity attained at
the end of a second as 981 centimeters (32.2 feet) per second. The
number 981 defines the "acceleration in the field of gravitation,"
and this field is fully characterized by that single number; with its
help we can also calculate the movement of an object hurled out in an
arbitrary direction. In order to measure the acceleration we let the
body drop alongside of a vertical measure set solidly on the ground;
on this scale we read at every moment the figure that indicates the
height, the only co-ordinate that is of importance in this rectilinear
movement. Now we ask what would we be able to see if the measure were
not bound solidly to the earth, if it, let us suppose, moved down or
up with the place where it is located and where we are ourselves. If
in this case the speed were constant, then, and this is in accord with
the special theory of relativity, there would be no motion observed at
all; we should again find an acceleration of 981 for a falling body. It
would be different if the measure moved with changeable velocity.

If it went down with a constant acceleration of 981 itself, then an
object could remain permanently at the same point on the measure,
or could move up or down itself alongside of it, with constant
speed. The relative movement of the body with regard to the measure
should be without acceleration, and if we had to judge only by what
we observed in the spot where we were and which was falling itself,
then we should get the impression that there was no gravitation at
all. If the measure goes down with an acceleration equal to a half
or a third of what it just was, then the relative motion of the body
will, of course, be accelerated, but we should find the increase
in velocity per second one-half or two-thirds of 981. If, finally,
we let the measure rise with a uniformly accelerated movement, then
DigitalOcean Referral Badge