Scientific American Supplement, No. 531, March 6, 1886 by Various
page 25 of 142 (17%)
page 25 of 142 (17%)
|
line. It would do so, if it were not continually deflected from this
line. Another force is constantly exerted upon it, compelling it, at every successive point of its path, to leave the direct line of motion, and move on a line which is everywhere equally distant from the center to which it is held. If at any point the revolving body could get free, and sometimes it does get free, it would move straight on, in a line tangent to the circle at the point of its liberation. But if it cannot get free, it is compelled to leave each new tangential direction, as soon as it has taken it. This is illustrated in the above figure. The body, A, is supposed to be revolving in the direction indicated by the arrow, in the circle, A B F G, around the center, O, to which it is held by the cord, O A. At the point, A, it is moving in the tangential direction, A D. It would continue to move in this direction, did not the cord, O A, compel it to move in the arc, A C. Should this cord break at the point, A, the body would move; straight on toward D, with whatever velocity it had. You perceive now what centrifugal force is. This body is moving in the direction, A D. The centripetal force, exerted through the cord, O A, pulls it aside from this direction of motion. The body resists this deflection, and this resistance is its centrifugal force. [Illustration: Fig. 1] Centrifugal force is, then, properly defined to be the disposition of a revolving body to move in a straight line, and the resistance which such a body opposes to being drawn aside from a straight line of motion. The force which draws the revolving body continually to the center, or the deflecting force, is called the centripetal force, and, aside from the |
|