Scientific American Supplement, No. 531, March 6, 1886 by Various
page 28 of 142 (19%)
page 28 of 142 (19%)
|
If, however, a fluid be poured on the side of the revolving wheel near
the axis, it will move out to the rim on radial lines, as may be observed on car wheels universally. The radial lines of black oil on these wheels look very much as if centrifugal force actually did produce motion, or had at least a very decided tendency to produce motion, in the radial direction. This interesting action calls for explanation. In this action the oil moves outward gradually, or by inconceivably minute steps. Its adhesion being overcome in the least possible degree, it moves in the same degree tangentially. In so doing it comes in contact with a point of the surface which has a motion more rapid than its own. Its inertia has now to be overcome, in the same degree in which it had overcome the adhesion. Motion in the radial direction is the result of these two actions, namely, leaving the first point of contact tangentially and receiving an acceleration of its motion, so that this shall be equal to that of the second point of contact. When we think about the matter a little closely, we see that at the rim of the wheel the oil has perhaps ten times the velocity of revolution which it had on leaving the journal, and that the mystery to be explained really is, How did it get that velocity, moving out on a radial line? Why was it not left behind at the very first? Solely by reason of its forward tangential motion. That is the answer. When writers who understand the subject talk about the centripetal and centrifugal forces being different names for the same force, and about equal action and reaction, and employ other confusing expressions, just remember that all they really mean is to express the universal relation between force and resistance. The expression "centrifugal force" is itself so misleading, that it becomes especially important that the real nature of this so-called force, or the sense in which the term "force" is used in this expression, should be fully explained.[1] This force is |
|