Scientific American Supplement, No. 531, March 6, 1886 by Various
page 46 of 142 (32%)
page 46 of 142 (32%)
|
falling to the earth, as the astronomers assured us it was, it should
never reach it, nor have its falling velocity accelerated. In popular treatises on astronomy, such for example as that of Professor Newcomb, this is explained by a diagram in which the tangential line is carried out as in Fig. 1, and by showing that in falling from the point A to the earth as a center, through distances increasing as the square of the time, the moon, having the tangential velocity that it has, could never get nearer to the earth than the circle in which it revolves around it. This is all very true, and very unsatisfactory. We know that this long tangential line has nothing to do with the motion of the moon, and while we are compelled to assent to the demonstration, we want something better. To my mind the better and more satisfactory explanation is found in the fact that the moon is forever commencing to fall, and is continually beginning to fall in a new direction. A revolving body, as we have seen, never gets past that point, which is entirely beyond our sight and our comprehension, of beginning to fall, before the direction of its fall is changed. So, under the attraction of the earth, the moon is forever leaving a new tangential direction of motion at the same rate, without acceleration. (_To be continued_.) * * * * * COMPRESSED AIR POWER SCHEMES. By J. STURGEON, Engineer of the Birmingham Compressed Air Power Company. |
|