Book-bot.com - read famous books online for free

Scientific American Supplement, No. 446, July 19, 1884 by Various
page 15 of 142 (10%)
against the pressure of the wind on the side vane, and holds the mill at
an angle to the plane of the wind, insuring thereby the number of
revolutions per minute required, according to the position to which the
governing mechanism has been set or adjusted.

If the velocity of the wind is such that the pressure on the side vane
overcomes the resistance of the counter weight, then the side vane is
carried around parallel with the rudder vane, presenting only the edge
of the wind wheel or ends of the fans to the wind, when the mill stops
running.

This type of mill presents more effective wind receiving or working
surface when in the wind, and less surface exposed to storms when out of
the wind, than any other type of mill. It is at all times under the
control of an operator on the ground.

A 22-foot Eclipse mill presents 352 square feet of wind receiving and
working surface in the wind, and only 9½ square feet of wind resisting
surface when out of the wind.

Solid-wheel mills are superseding all others in this country, and are
being exported largely to all parts of the world, in sizes from 10 to 30
feet in diameter. Many of these mills have withstood storms without
injury, where substantial buildings in the immediate vicinity have been
badly damaged. I will refer to some results accomplished with pumping
mills:

In the spring of 1881 there was erected for Arkansas City, Kansas, a
14-foot diameter pumping wind mill; a 32,000-gallon water tank, resting
on a stone substructure 15 feet high, the ground on which it stands
DigitalOcean Referral Badge