Scientific American Supplement, No. 446, July 19, 1884 by Various
page 15 of 142 (10%)
page 15 of 142 (10%)
|
against the pressure of the wind on the side vane, and holds the mill at
an angle to the plane of the wind, insuring thereby the number of revolutions per minute required, according to the position to which the governing mechanism has been set or adjusted. If the velocity of the wind is such that the pressure on the side vane overcomes the resistance of the counter weight, then the side vane is carried around parallel with the rudder vane, presenting only the edge of the wind wheel or ends of the fans to the wind, when the mill stops running. This type of mill presents more effective wind receiving or working surface when in the wind, and less surface exposed to storms when out of the wind, than any other type of mill. It is at all times under the control of an operator on the ground. A 22-foot Eclipse mill presents 352 square feet of wind receiving and working surface in the wind, and only 9½ square feet of wind resisting surface when out of the wind. Solid-wheel mills are superseding all others in this country, and are being exported largely to all parts of the world, in sizes from 10 to 30 feet in diameter. Many of these mills have withstood storms without injury, where substantial buildings in the immediate vicinity have been badly damaged. I will refer to some results accomplished with pumping mills: In the spring of 1881 there was erected for Arkansas City, Kansas, a 14-foot diameter pumping wind mill; a 32,000-gallon water tank, resting on a stone substructure 15 feet high, the ground on which it stands |
|