Scientific American Supplement, No. 601, July 9, 1887 by Various
page 85 of 131 (64%)
page 85 of 131 (64%)
![]() | ![]() |
|
good order, and to maintain all copings and other projections intended
to bar the access of water coming down from above, and to stop the overflowing of gutters and stack pipes, which soon soaks the wall through and through. Of course, if there is a failure of foundations, brickwork, as was pointed out earlier, becomes affected at once. But if these be good, and the materials used be sound ones, and if the other precautions just recommended be taken, it will last strong and sturdy for an immense length of time. In some cases, as for example in the Roman ruins, it has stood for 1,500 years under every possible exposure and neglect, and still shows something of a sturdy existence after all, though sadly mutilated. If we now return to the question, What can be well done in brickwork? no better answer can be given than to point to what has been and is being done, especially in London and within our own reach and observation. Great engineering works, such as railway viaducts, the lining of railway tunnels, the piers and even the arches of bridges, sewage works, dock and wharf walls, furnace chimneys, and other works of this sort are chiefly done in brickwork. And notwithstanding that iron is far more used by the engineer for some purposes and concrete for others now than formerly, still there is a great field for brickwork. The late Mr. Brunel, who was fond of pushing size to extremes, tried how wide a span he could arch over with brickwork. And I believe the bridge which carries the G.W.R. over the Thames at Maidenhead has the widest arch he or any other engineer has successfully erected in brick. This arch has, it is stated, a span of 128 ft. It is segmental, the radius being 169 ft., and the rise from springing to crown 24 ft., and the depth of the arch 5 ft. 3 in. Nowadays, of course, no one would dream of anything but |
|