Scientific American Supplement, No. 601, July 9, 1887 by Various
page 96 of 131 (73%)
page 96 of 131 (73%)
![]() | ![]() |
|
the coils or circuits are coincident. In cylindrical coils in which the
current is uniformly distributed through all the parts of the conductor section, what I here term the electrical middle, or the center of gravity of the ampere turns of the coils, will be the plane at right angles to its axis at its middle, that of B and C, in Fig. 4, being indicated by a dotted line. To repeat, then, when the centers or center planes of the conductors, Fig. 4, coincide, no indication of electro-inductive repulsion is given, because it is mutually balanced in all directions; but when the coils are displaced, a repulsion is manifested, which reaches a maximum at a position depending on the peculiarities of proportion and distribution of current at any time in the two circuits or conductors. [Illustration: FIG. 9.] It is not my purpose now to discuss the ways of determining the distribution of currents and mechanical effects, as that would extend the present paper much beyond its intended limit. The forms and relative arrangement of the two conductors may be greatly varied. In Fig. 5 the parts are of equal diameter, one, B, being a closed ring, and the other, C, being an annular coil placed parallel thereto; and an iron core or wire bundle placed in the common axis of the two coils increases the repulsive action. B may be simply a disk or plate of any form, without greatly affecting the nature of the action produced. It may also be composed of a pile of copper washers or a coil of wire, as before indicated. [Illustration: FIG. 10.] An arrangement of parts somewhat analogous to that of a horseshoe |
|