Scientific American Supplement, No. 601, July 9, 1887 by Various
page 99 of 131 (75%)
page 99 of 131 (75%)
![]() | ![]() |
|
when the latter current was changing from zero to maximum positive or
negative current, so producing repulsion; and would be induced in the same direction when changing from maximum positive or negative value to zero, so producing attraction. This condition can be illustrated by a diagram, Fig. 12. Here the lines of zero current are the horizontal straight lines. The wavy lines represent the variations of current strength in each conductor, the current in one direction being indicated by that portion of the curve above the zero line, and in the other direction by that portion below it. The vertical dotted lines simply mark off corresponding portions of phase or succession of times. [Illustration: FIG. 15] Here it will be seen that in the positive primary current descending from m, its maximum, to the zero line, the secondary current has risen from its zero to m¹, its maximum. Attraction will therefore ensue, for the currents are in the same direction in the two conductors. When the primary current increases from zero to its negative maximum, n, the positive current in the secondary closed circuit will be decreasing from m¹, its positive maximum, to zero; but, as the currents are in opposite directions, repulsion will occur. These actions of attraction and repulsion will be reproduced continually, there being a repulsion, then an attraction, then a repulsion, and again an attraction, during one complete wave of the primary current. The letters, r, a, at the foot of the diagram, Fig. 12, indicate this succession. In reality, however, the effects of self-induction in causing a lag, shift, or retardation of phase in the secondary current will |
|