Scientific American Supplement, No. 799, April 25, 1891 by Various
page 35 of 124 (28%)
page 35 of 124 (28%)
|
engines that would combine _efficiency_ with _light weight_ and _economy
of space and cost_. The trade demanded compressors at inaccessible localities, and in many cases it was preferred to sacrifice isothermal results to simplicity of construction and low cost. It is evident that an air compressor which has the steam cylinder and the air cylinder on a single straight rod will apply the power in the most direct manner, and will involve the simplest mechanics in the construction of its parts. It is evident, however, that this straight line, or direct construction, results in an engine which has the greatest power at a time when there is no work to perform. At the beginning of the stroke steam at the boiler pressure is admitted behind the piston, and, as the air piston at that time is also at the initial point in the stroke, it has only free air against it. The two pistons move simultaneously, and the resistance in the air cylinder rapidly increases as the air is compressed. To get economical results it is, of course, necessary to cut off in the steam cylinder, so that at the end of the stroke, when the steam pressure is low, as indicated by the dotted line (Fig. 5), the air pressure is high, as similarly indicated. The early direct-acting compressor used steam at full pressure throughout the stroke. The Westinghouse pump, applied to locomotives, is built on this principle, and those who have observed it work have perhaps noticed that its speed of stroke is not uniform, but that it moves rapidly at the beginning, gradually reducing its speed, and seems to labor, until the direction of stroke is reversed. This construction is admitted to be wasteful, but in some cases, notably that of the Westinghouse pump, economy in steam consumption is sacrificed to lightness and economy of space. [Illustration: FIG. 5.] |
|