Scientific American Supplement, No. 598, June 18, 1887 by Various
page 22 of 124 (17%)
page 22 of 124 (17%)
|
bolt holes in the blade flanges allow an adjustment of pitch, but in each
case the blades were set as nearly as possible at the pitch at which they were cast. The particulars given in the table may be taken to be as reliable and accurate as such things can be obtained, and for each ship there are corresponding data; that is, the powers, speeds, displacements, revolutions, pitches, and other items existed at the same time. There are a few points of detail about these propellers which deserve a passing notice. In Fig. 1 is shown a fore and aft section through the boss. It will be observed that the flanges of the blades are sunk into the boss, and that the bolts are sunk into the flanges. The recess for the bolt heads is covered with a thin plate having the curve of the flange, so that the flanges and the boss form a section of a sphere. This method of construction is a little more expensive than exposed flanges and bolts, which, however, render the boss a huge churn. With the high revolutions at which these screws work, a spherical boss is extremely desirable, but, of course, the details need not be exactly as shown in the illustration. The conical tail is fitted to prevent loss with eddies behind the flat end of the boss, and is particularly valuable with the screws of high speed ships. The light hood shown on the stern bracket is for the purpose of preventing eddies behind the boss of the stern bracket, and to save the resistance of the flat face of the screw boss. The edges of the blades are cast sharp, instead of being rounded at the back, with a small radius, as in the usual practice--the object of the sharp edge being the diminution of the edge resistance. The driving key extends the whole length of the boss, and the tapered shaft fits throughout its length. [Illustration: FIG. 1.] These points of detail have been features of all Admiralty screws for some years. |
|