Scientific American Supplement, No. 586, March 26, 1887 by Various
page 104 of 134 (77%)
page 104 of 134 (77%)
![]() | ![]() |
|
Ferrous sulphide was next similarly treated, and gave, after the lapse of a few hours, a copious blackish precipitation of sulphur, and possessing properties similar to the sulphur obtained by dissolving sulphides such as cupric sulphide in dilute nitric acid, in all other respects resembling common sulphur. Phosphides of iron, zinc, etc., were next introduced, and gave, besides carbon and other impurities, a residue containing a large percentage of phosphorus, which differed from ordinary phosphorus with respect to its insolubility in carbon disulphide, and which resembled the reaction in the case with silicon-eisen rather than that of the boron compound, insomuch that a large quantity of the phosphorus had passed into solution. A rod of impure copper, containing arsenic, iron, zinc, and other impurities, was next substituted, using hydrochloric acid as a solvent in place of sulphuric acid. In the course of a day the copper had entirely dissolved and precipitated itself on the negative electrode, the impurities remaining in solution. The copper, after having been washed, dried, and weighed, gave identical results with regard to percentage with a careful gravimetric estimation. I have lately used this method, and obtained excellent results with respect to the analysis of commercial copper, especially in the estimation of small quantities of arsenic, thus enabling the experimenter to perform his investigation on a much larger quantity than when precipitation is resorted to, at the same time avoiding the precipitated copper carrying down with it the arsenic. I have in this manner detected arsenic in commercial copper when all other methods have totally failed. I have also found the above method especially applicable with respect to the analysis of brass. |
|