Faraday as a Discoverer by John Tyndall
page 27 of 138 (19%)
page 27 of 138 (19%)
|
horseshoe magnet of the Royal Society, and connecting the axis and
the edge of the disk, each by a wire with a galvanometer, he obtained, when the disk was turned round, a constant flow of electricity. The direction of the current was determined by the direction of the motion, the current being reversed when the rotation was reversed. He now states the law which rules the production of currents in both disks and wires, and in so doing uses, for the first time, a phrase which has since become famous. When iron filings are scattered over a magnet, the particles of iron arrange themselves in certain determinate lines called magnetic curves. In 1831, Faraday for the first time called these curves 'lines of magnetic force'; and he showed that to produce induced currents neither approach to nor withdrawal from a magnetic source, or centre, or pole, was essential, but that it was only necessary to cut appropriately the lines of magnetic force. Faraday's first paper on Magneto-electric Induction, which I have here endeavoured to condense, was read before the Royal Society on the 24th of November, 1831. On January 12, 1832, he communicated to the Royal Society a second paper on Terrestrial Magneto-electric Induction, which was chosen as the Bakerian Lecture for the year. He placed a bar of iron in a coil of wire, and lifting the bar into the direction of the dipping needle, he excited by this action a current in the coil. On reversing the bar, a current in the opposite direction rushed through the wire. The same effect was produced when, on holding the helix in the line of dip, a bar of iron was thrust into it. Here, however, the earth acted on the coil through the intermediation of the bar of iron. He abandoned the bar and simply set a copper plate spinning in a horizontal plane; he knew that the earth's lines of magnetic force |
|