Faraday as a Discoverer by John Tyndall
page 74 of 138 (53%)
page 74 of 138 (53%)
|
accuracy the exact proportionality of the rotation to the distance
traversed by the polarized beam. Thus in one series of experiments where the rotation required by the direct beam was 12degrees, that acquired by three passages through the glass was 36degrees, while that acquired by five passages was 60degrees. But even when this method of magnifying was applied, he failed with various solid substances to obtain any effect; and in the case of air, though he employed to the utmost the power which these repeated reflections placed in his hands, he failed to produce the slightest sensible rotation. These failures of Faraday to obtain the effect with gases seem to indicate the true seat of the phenomenon. The luminiferous ether surrounds and is influenced by the ultimate particles of matter. The symmetry of the one involves that of the other. Thus, if the molecules of a crystal be perfectly symmetrical round any line through the crystal, we may safely conclude that a ray will pass along this line as through ordinary glass. It will not be doubly refracted. From the symmetry of the liquid figures, known to be produced in the planes of freezing, when radiant heat is sent through ice, we may safely infer symmetry of aggregation, and hence conclude that the line perpendicular to the planes of freezing is a line of no double refraction; that it is, in fact, the optic axis of the crystal. The same remark applies to the line joining the opposite blunt angles of a crystal of Iceland spar. The arrangement of the molecules round this line being symmetrical, the condition of the ether depending upon these molecules shares their symmetry; and there is, therefore, no reason why the wavelength should alter with the alteration of the azimuth round this line. Annealed glass has its molecules symmetrically arranged round every line that can be drawn through it; hence it is not doubly refractive. But let the |
|