Kepler by Walter W. Bryant
page 40 of 58 (68%)
page 40 of 58 (68%)
![]() | ![]() |
|
Mars' orbit, joining perihelion and aphelion, always fell inside the
circle except at those two points. It was a long time before it dawned upon Kepler that the simplest figure falling within the circle except at the two extremities of the diameter, was an ellipse, and it is not clear why his first attempt with an ellipse should have been just as much too narrow as the circle was too wide. The fact remains that he recognised suddenly that halving this error was tantamount to reducing the circle to the ellipse whose eccentricity was that of the old theory, i.e. that in which the sun would be in one focus and the equant in the other. Having now fitted the ends of both major and minor axes of the ellipse, he leaped to the conclusion that the orbit would fit everywhere. The practical effect of his clearing of the "second inequality" was to refer the orbit of Mars directly to the sun, and he found that the area between successive distances of Mars from the sun (instead of the sum of the distances) was strictly proportional to the time taken, in short, equal areas were described in equal times (2nd Law) when referred to the sun in the focus of the ellipse (1st Law). He announced that (1) The planet describes an ellipse, the sun being in one focus; and (2) The straight line joining the planet to the sun sweeps out equal areas in any two equal intervals of time. These are Kepler's first and second Laws though not discovered in that order, and it was at once clear that Ptolemy's "bisection of the excentricity" simply amounted to the fact that the centre of an ellipse bisects the distance between the foci, the sun being in one focus and the angular velocity being uniform about the empty focus. For so many centuries had the fetish of circular motion postponed discovery. It was natural that Kepler should assume that his laws would apply equally to all the |
|