Architecture and Democracy by Claude Fayette Bragdon
page 62 of 130 (47%)
page 62 of 130 (47%)
![]() | ![]() |
|
previously in the case of the square, we draw the cube in its new
position (ABB'D'C'C) and also as before we connect each apex of the first cube with the corresponding apex of the other, because each of these points generates a line (an edge), each line a plane, and each plane a solid. This is the tesseract or hyper-cube in plane projection. It has the 16 points, 32 lines, and 8 cubes known to compose the figure. These cubes occur in pairs, and may be readily identified.[1] The tesseract as portrayed in A, Figure 14, is shown according to the conventions of oblique, or two-point perspective; it can equally be represented in a manner correspondent to parallel perspective. The parallel perspective of a cube appears as a square inside another square, with lines connecting the four vertices of the one with those of the other. The third dimension (the one beyond the plane of the paper) is here conceived of as being not beyond the boundaries of the first square, but _within_ them. We may with equal propriety conceive of the fourth dimension as a "beyond which is within." In that case we would have a rendering of the tesseract as shown in B, Figure 14: a cube within a cube, the space between the two being occupied by six truncated pyramids, each representing a cube. The large outside cube represents the original generating cube at the beginning of its motion into the fourth dimension, and the small inside cube represents it at the end of that motion. [Illustration: PLATE XIII. IMAGINARY COMPOSITION: THE AUDIENCE CHAMBER] These two projections of the tesseract upon plane space are not the only ones possible, but they are typical. Some idea of the variety of |
|