Book-bot.com - read famous books online for free

An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 59 of 272 (21%)
[Note 1: In the foregoing procedure the acid solution is standardized
and the alkali solution referred to this standard by calculation. It
is equally possible, if preferred, to standardize the alkali solution.
The standards in a common use for this purpose are purified
oxalic acid (H_{2}C_{2}O_{4}.2H_{2}O), potassium acid oxalate
(KHC_{2}O_{4}.H_{2}O or KHC_{2}O_{4}), potassium tetroxalate
(KHC_{2}O_{4}.H_{2}C_{2}O_{4}.2H_{2}O), or potassium acid tartrate
(KHC_{4}O_{6}), with the use of a suitable indicator. The oxalic acid
and the oxalates should be specially prepared to insure purity,
the main difficulty lying in the preservation of the water of
crystallization.

It should be noted that the acid oxalate and the acid tartrate each
contain one hydrogen atom replaceable by a base, while the tetroxalate
contains three such atoms and the oxalic acid two. Each of the two
salts first named behave, therefore, as monobasic acids, and the
tetroxalate as a tribasic acid.]

[Note 2: It is also possible to standardize a hydrochloric acid
solution by precipitating the chloride ions as silver chloride and
weighing the precipitate, as prescribed under the analysis of sodium
chloride to be described later. Sulphuric acid solutions may be
standardized by precipitation of the sulphate ions as barium sulphate
and weighing the ignited precipitate, but the results are not above
criticism on account of the difficulty in obtaining large precipitates
of barium sulphate which are uncontaminated by inclosures or are not
reduced on ignition.]



DigitalOcean Referral Badge