An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 67 of 272 (24%)
page 67 of 272 (24%)
|
in the process under consideration are those of potassium bichromate
and ferrous sulphate. The reaction between them, in the presence of an excess of sulphuric acid, may be expressed as follows: 6FeSO_{4} + K_{2}Cr_{2}O_{7} + 7H_{2}SO_{4} --> 3Fe_{2}(SO_{4})_{3} + K_{2}SO_{4} + Cr_{2}(SO_{4})_{3} + 7H_{2}O. If the compounds of iron and chromium, with which alone we are now concerned, be written in such a way as to show the oxides of these elements in each, they would appear as follows: On the left-hand side of the equation 6(FeO.SO_{3}) and K_{2}O.2CrO_{3}; on the right-hand side, 3(Fe_{2}O_{3}.3SO_{3}) and Cr_{2}O_{3}.3SO_{3}. A careful inspection shows that there are three less oxygen atoms associated with chromium atoms on the right-hand side of the equation than on the left-hand, but there are three more oxygen atoms associated with iron atoms on the right than on the left. In other words, a molecule of potassium bichromate has given up three atoms of oxygen for oxidation purposes; i.e., a molecular weight in grams of the bichromate (294.2) will furnish 3 X 16 or 48 grams of oxygen for oxidation purposes. As this 48 grams is six times 8 grams, the basis of the system, the normal solution of potassium bichromate should contain per liter one sixth of 294.2 grams or 49.03 grams. A further inspection of the dissected compounds above shows that six molecules of FeO.SO_{3} were required to react with the three atoms of oxygen from the bichromate. From the two equations 3H_{2} + 3O --> 3H_{2}O 6(FeO.SO_{3}) + 3O --> 3(Fe_{2}O_{3}.3SO_{3}) |
|