An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 69 of 272 (25%)
page 69 of 272 (25%)
|
ferrous ammonium sulphate (FeSO_{4}.(NH_{4})_{2}SO_{4}.6H_{2}O) and
dissolve in distilled water containing 5 cc. of concentrated sulphuric acid. Transfer the solution to a liter bottle, add 5 cc. concentrated sulphuric acid, make up to about 1000 cc. and shake vigorously to insure uniformity. INDICATOR SOLUTION No indicator is known which, like methyl orange, can be used within the solution, to show when the oxidation process is complete. Instead, an outside indicator solution is employed to which drops of the titrated solution are transferred for testing. The reagent used is potassium ferricyanide, which produces a blue precipitate (or color) with ferrous compounds as long as there are unoxidized ferrous ions in the titrated solution. Drops of the indicator solution are placed upon a glazed porcelain tile, or upon white cardboard which has been coated with paraffin to render it waterproof, and drops of the titrated solution are transferred to the indicator on the end of a stirring rod. When the oxidation is nearly completed only very small amounts of the ferrous compounds remain unoxidized and the reaction with the indicator is no longer instantaneous. It is necessary to allow a brief time to elapse before determining that no blue color is formed. Thirty seconds is a sufficient interval, and should be adopted throughout the analytical procedure. If left too long, the combined effect of light and dust from the air will cause a reduction of the ferric compounds already formed and a resultant blue will appear which misleads the observer with respect to the true end-point. The indicator solution must be highly diluted, otherwise its own color |
|