An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 88 of 272 (32%)
page 88 of 272 (32%)
![]() | ![]() |
|
is still left in the funnel!. Discard the filtrate, and again
pass through 100 cc. of the warm, dilute acid. Test this with the permanganate solution. A single drop should color it permanently; if it does not, repeat the washing, until assured that the zinc is not contaminated with appreciable quantities of reducing substances. Be sure that no air enters the reductor (Note 1). Pour the iron solution while hot (but not boiling) through the reductor at a rate not exceeding 50 cc. per minute (Notes 2 and 3). Wash out the beaker with dilute sulphuric acid, and follow the iron solution without interruption with 175 cc. of the warm acid and finally with 75 cc. of distilled water, leaving the funnel partially filled. Remove the filter bottle and cool the solution quickly under the water tap (Note 4), avoiding unnecessary exposure to the oxygen of the air. Add 10 cc. of dilute sulphuric acid and titrate to a faint pink with the permanganate solution, adding it directly to the contents of the vacuum flask. Should the end-point be overstepped, the ferrous sulphate solution may be added. From the volume of the solution required to oxidize the iron in the wire, calculate the relation to the normal of the permanganate solution. The duplicate results should be concordant within two parts in one thousand. [Note 1: The funnel of the reductor must never be allowed to empty. If it is left partially filled with water the reductor is ready for subsequent use after a very little washing; but a preliminary test is always necessary to safeguard against error. If more than a small drop of permanganate solution is required to |
|