Book-bot.com - read famous books online for free

An Introductory Course of Quantitative Chemical Analysis - With Explanatory Notes by Henry P. Talbot
page 88 of 272 (32%)
is still left in the funnel!. Discard the filtrate, and again
pass through 100 cc. of the warm, dilute acid. Test this with the
permanganate solution. A single drop should color it permanently; if
it does not, repeat the washing, until assured that the zinc is not
contaminated with appreciable quantities of reducing substances. Be
sure that no air enters the reductor (Note 1).

Pour the iron solution while hot (but not boiling) through the
reductor at a rate not exceeding 50 cc. per minute (Notes 2 and 3).
Wash out the beaker with dilute sulphuric acid, and follow the iron
solution without interruption with 175 cc. of the warm acid and
finally with 75 cc. of distilled water, leaving the funnel partially
filled. Remove the filter bottle and cool the solution quickly under
the water tap (Note 4), avoiding unnecessary exposure to the oxygen of
the air. Add 10 cc. of dilute sulphuric acid and titrate to a faint
pink with the permanganate solution, adding it directly to the
contents of the vacuum flask. Should the end-point be overstepped, the
ferrous sulphate solution may be added.

From the volume of the solution required to oxidize the iron in
the wire, calculate the relation to the normal of the permanganate
solution. The duplicate results should be concordant within two parts
in one thousand.

[Note 1: The funnel of the reductor must never be allowed to empty.
If it is left partially filled with water the reductor is ready for
subsequent use after a very little washing; but a preliminary test is
always necessary to safeguard against error.

If more than a small drop of permanganate solution is required to
DigitalOcean Referral Badge