The Brain and the Voice in Speech and Song by F. W. Mott
page 29 of 82 (35%)
page 29 of 82 (35%)
|
separated, leaving free vent for air through the glottis; consequently
there is no vibration and no sound produced by the cords. (4) The soft vocal note, or aspirate, shows that the chink of the glottis is not completely closed, and especially the rima respiratoria (the space between the vocal processes of the pyramidal cartilages.) (5) Strong vocal note, produced in singing notes of the lower register. (6) Strong vocal note, produced in singing notes of the higher register.] Musical notes are comprised between 27 and 4000 vibrations per second. The extent and limit of the voice may be given as between C 65 vibrations per second and f''' 1417 vibrations per second, but this is most exceptional, it is seldom above c''' 1044 per second. The compass of a well-developed singer is about two to two and a half octaves. The normal pitch, usually called the "diapason normal," is that of a tuning-fork giving 433 vibrations per second. Now what does the laryngoscope teach regarding the change occurring in the vocal cords during the singing of the two to two and a half octaves? If the vocal cords are observed by means of the laryngoscope during phonation, no change is _seen_, owing to the rapidity of the vibrations, although a scale of an octave may be sung; in the lower notes, however, the vocal cords are seen not so closely approximated as in the very high notes. This may account for the difficulty experienced in singing high notes piano. Sir Felix Semon in a Friday evening lecture at the Royal Institution showed some remarkable photographs, by Dr. French, of the larynx of two great singers, a contralto and a high soprano, during vocalisation, which exhibit changes in the length of the vocal cords and in the size of the slit between them. Moreover, the photographs show that the vocal cords at the break from the lower to the upper register exhibit characteristic changes. [Illustration: Fig. 11] |
|