Scientific American Supplement, No. 803, May 23, 1891 by Various
page 53 of 143 (37%)
page 53 of 143 (37%)
![]() | ![]() |
|
Sheffield, England, and the Ellis process at the Atlas Works of Sir
John Brown & Co., of the same place. These are the two leading manufacturers of compound plate. [Illustration: Fig. 5.] The method employed by Wilson in making compound plate is to first make a good wrought iron plate. To the surface of this and along each side of the length of the plate are fixed two small channel irons, as shown in Fig. 5. The plate is then raised to a welding heat in a gas furnace, and transferred to an iron flask or mould. Wedges are driven in between the back of the plate and the side of the mould, thus forcing the channel irons up snug against the opposite side of the mould. Moulding sand is then packed around the back and sides of the plate (see Fig. 6). The mould is lowered in a vertical position into a pit. Molten steel, manufactured by either the Siemens-Martin or Bessemer process, is then poured in through a trough that forms several streams, and forms the hard face of the plate. The molten steel as it runs down cleans the face of the wrought iron plate, scoring it in places, and, being of much higher temperature, the excessive heat carbonates the iron to a depth of one-eighth to three-sixteenths of an inch, forming a zone of mild steel between the hard steel and soft iron. The mould is placed in a vertical position to insure closeness of structure and the forcing of gases out of the steel. After solidifying, the whole plate is pressed, and passed through the rolls to obtain thorough welding. It is then bent, planed, fitted, tempered, and annealed to remove internal strains. [Illustration: Fig. 6.] |
|