Scientific American Supplement, No. 520, December 19, 1885 by Various
page 40 of 123 (32%)
page 40 of 123 (32%)
|
It frequently happens in the laboratory that platinum vessels, after long-continued use, begin to show signs of wear, and become perforated with minute pinholes. When they have reached this stage, they are usually accounted of no further utility, and are disposed of as scrap; not that it is impossible to repair them--for with fine gold wire and an oxyhydrogen jet this is easily feasible--but that the proper appliances and skill are not in possession of all. Irrespective of the manipulation of the hydrogen jet, it is rather difficult without long practice to hold the end of the fine wire precisely over the aperture and to keep it in position. It occurred to me that, if the gold in a finely divided condition could be placed in very intimate contact with the platinum, judging from the fusibility of gold-platinum alloys, union could be effected at a lower temperature over the ordinary gas blowpipe. I tried the experiment, and found the supposition correct. The substance I used was auric chloride, AuCl_{3}, which, as is well known, splits up on heating, first into aurous chloride, and at a higher temperature gives off all its chlorine and leaves metallic gold. Operating on a perforated platinum basin, in the first instance, I placed a few milligrammes of the aurous chloride from a 15 grain tube precisely over the perforation, and then gently heated to about 200° C. till the salt melted and ran through the holes. A little further heating caused the reduced gold to solidify on each side of the basin. The blowpipe was now brought to bear on the bottom of the dish, right over the particular spots it was wished to solder, and in a few moments, at a yellow-red heat (in daylight), the gold was seen to "run." On the vessel being immediately withdrawn, a very neat soldering was evident. The operation was repeated several times, till in a few minutes the dish had been rendered quite tight and serviceable. |
|