Scientific American Supplement, No. 795, March 28, 1891 by Various
page 84 of 136 (61%)
page 84 of 136 (61%)
![]() | ![]() |
|
and the extra motion due to the electrical impetus.
Experiments show that in such tubes a few molecules may traverse more than a hundred times the _mean_ free path, with a correspondingly increased velocity, until they are arrested by collisions. Indeed, the molecular free path may vary in one and the same tube, and at one and the same degree of exhaustion. Very many bodies, such as ruby, diamond, emerald, alumina, yttria, samaria, and a large class of earthy oxides and sulphides, phosphoresce in vacuum tubes when placed in the path of the stream of electrified molecules proceeding from the negative pole. The composition of the gaseous residue present does not affect phosphorescence; thus, the earth yttria phosphoresces well in the residual vacua of atmospherical air, of oxygen, nitrogen, carbonic anhydride, hydrogen, iodine, sulphur and mercury. With yttria in a vacuum tube, the point of maximum phosphorescence, as I have already pointed out, lies on the margin of the dark space. The diagram (Fig. 24) shows approximately the degree of phosphorescence in different parts of a tube at an internal pressure of 0.25 millimeter, or 330 M. On the top you see the positive and negative poles, A and B, the latter having the outline of the dark space shown by a dotted line, C. The curve, D E F, shows the relative intensities of the phosphorescence at different distances from the negative pole, and the position inside the dark space at which phosphorescence does not occur. The height of the curve represents the degree of phosphorescence. The most decisive effects of phosphorescence are reached by making the tube so large that the walls are outside the dark space, while the material submitted to experiment is placed just |
|