Book-bot.com - read famous books online for free

Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla
page 124 of 127 (97%)
mentioned, which are essentially electrical.

Suppose the light of the immediate future to be a solid rendered
incandescent by electricity. Would it not seem that it is better to
employ a small button than a frail filament? From many considerations
it certainly must be concluded that a button is capable of a higher
economy, assuming, of course, the difficulties connected with the
operation of such a lamp to be effectively overcome. But to light such
a lamp we require a high potential; and to get this economically we
must use high frequencies.

Such considerations apply even more to the production of light by the
incandescence of a gas, or by phosphorescence. In all cases we require
high frequencies and high potentials. These thoughts occurred to me a
long time ago.

Incidentally we gain, by the use of very high frequencies, many
advantages, such as a higher economy in the light production, the
possibility of working with one lead, the possibility of doing away
with the leading-in wire, etc.

The question is, how far can we go with frequencies? Ordinary
conductors rapidly lose the facility of transmitting electric impulses
when the frequency is greatly increased. Assume the means for the
production of impulses of very great frequency brought to the utmost
perfection, every one will naturally ask how to transmit them when the
necessity arises. In transmitting such impulses through conductors we
must remember that we have to deal with _pressure_ and _flow_, in the
ordinary interpretation of these terms. Let the pressure increase to
an enormous value, and let the flow correspondingly diminish, then
DigitalOcean Referral Badge