Book-bot.com - read famous books online for free

Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla
page 59 of 127 (46%)
with one or two straight filaments coinciding with its axis, and
possibly also in parabolical or spherical bulbs with the refractory
body or bodies placed in the focus or foci of the same; though the
latter is not probable, as the electrified atoms should in all cases
rebound normally from the surface they strike, unless the speed were
excessive, in which case they _would_ probably follow the general law
of reflection. No matter what shape the vessel may have, if the
exhaustion be low, a filament mounted in the globe is brought to the
same degree of incandescence in all parts; but if the exhaustion be
high and the bulb be spherical or pear-shaped, as usual, focal points
form and the filament is heated to a higher degree at or near such
points.

To illustrate the effect, I have here two small bulbs which are alike,
only one is exhausted to a low and the other to a very high degree.
When connected to the coil, the filament in the former glows uniformly
throughout all its length; whereas in the latter, that portion of the
filament which is in the centre of the bulb glows far more intensely
than the rest. A curious point is that the phenomenon occurs even if
two filaments are mounted in a bulb, each being connected to one
terminal of the coil, and, what is still more curious, if they be very
near together, provided the vacuum be very high. I noted in
experiments with such bulbs that the filaments would give way usually
at a certain point, and in the first trials I attributed it to a
defect in the carbon. But when the phenomenon occurred many times in
succession I recognized its real cause.

In order to bring a refractory body inclosed in a bulb to
incandescence, it is desirable, on account of economy, that all the
energy supplied to the bulb from the source should reach without loss
DigitalOcean Referral Badge