Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla
page 92 of 127 (72%)
page 92 of 127 (72%)
![]() | ![]() |
|
zinc sheet Z, with a tubular extension T, is slipped over the metallic
socket S. The bulb hangs downward from the terminal t, the zinc sheet Z, performing the double office of intensifier and reflector. The reflector is separated from the terminal t by an extension of the insulating plug P. [Illustration: FIG. 27.--PHOSPHORESCENT TUBE WITH INTENSIFYING REFLECTOR.] A similar disposition with a phosphorescent tube is illustrated in Fig. 27. The tube T is prepared from two short tubes of a different diameter, which are sealed on the ends. On the lower end is placed an outside conducting coating C, which connects to the wire w. The wire has a hook on the upper end for suspension, and passes through the centre of the inside tube, which is filled with some good and tightly packed insulator. On the outside of the upper end of the tube T is another conducting coating C_1 upon which is slipped a metallic reflector Z, which should be separated by a thick insulation from the end of wire w. The economical use of such a reflector or intensifier would require that all energy supplied to an air condenser should be recoverable, or, in other words, that there should not be any losses, neither in the gaseous medium nor through its action elsewhere. This is far from being so, but, fortunately, the losses may be reduced to anything desired. A few remarks are necessary on this subject, in order to make the experiences gathered in the course of these investigations perfectly clear. Suppose a small helix with many well insulated turns, as in experiment |
|