Scientific American Supplement, No. 455, September 20, 1884 by Various
page 21 of 141 (14%)
page 21 of 141 (14%)
![]() | ![]() |
|
otherwise being induced to produce a zinc free of lead, the estimation of
sulphur, sulphuric acid, and lead became necessary. These impurities are determined by well-known methods; sulphur is oxidized and precipitated with barium chloride, lead by sulphuric acid and alcohol. The examination of zinc dust, when used for the regeneration of metal, determines the quantity of zinc resident therein, and employed as reducing agent, the quantity of metal which causes the generation of hydrogen. Cadmium, showing the same deportment, must also be considered as well as lead and arsenic. A most complete and rapidly working method for the examination of zinciferous products has originated with the application of neutral ammonium carbonate as solvent. A solution of this preparation is made, according to H. Rose, by dissolving 230 grm. commercial ammon carbonate in 180 c.c. ammoniacal liquor of 0.92 s.g., and, by addition of water, augmenting it to one liter. This solution dissolves the metallic components, their oxides, and basic zinc sulphate, and transfers cadmium and lead oxide, also lead, magnesium, and lime sulphate, into insoluble carbonates. Iron and manganese, when present as protoxide, are dissolved; of iron sesquioxide but traces, and of cadmium oxide _in statu nascendi_ a small portion enter into solution. The solution of ammonium carbonate contains in each 10 c.c. 1 grm. ammonia, which dissolves 1.5 grm. zinc. The sample for examination is moistened with water and mixed with an adequate volume of the solvent, is digested at 50-60° C. until complete decomposition is effected. The heating of the liquid prevents the solution of iron, manganese, and cadmium. The content, sediment and liquid, is thrown on a filter and washed with hot water to which a small quantity of |
|