Six Lectures on Light - Delivered In The United States In 1872-1873 by John Tyndall
page 21 of 237 (08%)
page 21 of 237 (08%)
![]() | ![]() |
|
mark its own white track before you. A shallow circular vessel (RIG,
fig. 4), half filled with water, rendered slightly turbid by the admixture of a little milk, or the precipitation of a little mastic, is placed with its glass front vertical. By means of a small plane reflector (M), and through a slit (I) in the hoop surrounding the vessel, a beam of light is admitted in any required direction. It impinges upon the water (at O), enters it, and tracks itself through the liquid in a sharp bright band (O G). Meanwhile the beam passes unseen through the air above the water, for the air is not competent to scatter the light. A puff of smoke into this space at once reveals the track of the incident-beam. If the incidence be vertical, the beam is unrefracted. If oblique, its refraction at the common surface of air and water (at O) is rendered clearly visible. It is also seen that _reflection_ (along O R) accompanies refraction, the beam dividing itself at the point of incidence into a refracted and a reflected portion.[4] [Illustration: Fig. 4.] The law by which Snell connected together all the measurements executed up to his time, is this: Let A B C D (fig. 5) represent the outline of our circular vessel, A C being the water-line. When the beam is incident along B E, which is perpendicular to A C, there is no refraction. When it is incident along _m_ E, there is refraction: it is bent at E and strikes the circle at _n_. When it is incident along _m'_ E there is also refraction at E, the beam striking the point _n'_. From the ends of the two incident beams, let the perpendiculars _m_ _o_, _m'_ _o'_ be drawn upon B D, and from the ends of the refracted beams let the perpendiculars _p_ _n_, _p'_ _n'_ be also drawn. Measure the lengths of _o m_ and of _p_ _n_, and divide the one |
|