Six Lectures on Light - Delivered In The United States In 1872-1873 by John Tyndall
page 37 of 237 (15%)
page 37 of 237 (15%)
![]() | ![]() |
|
particles, separated, it may be, by exceedingly minute distances, but
still separated. To use the scientific phrase, they are not optically continuous. Now, wherever optical continuity is ruptured we have reflection of the incident light. It is the multitude of reflections at the limiting surfaces of the particles that prevents light from passing through snow, powdered glass, or common salt. The light here is exhausted in echoes, not extinguished by true absorption. It is the same kind of reflection that renders the thunder-cloud so impervious to light. Such a cloud is composed of particles of water, mixed with particles of air, both separately transparent, but practically opaque when thus mixed together. In the case of pigments, then, the light is _reflected_ at the limiting surfaces of the particles, but it is in part _absorbed_ within the particles. The reflection is necessary to send the light back to the eye; the absorption is necessary to give the body its colour. The same remarks apply to flowers. The rose is red, in virtue, not of the light reflected from its surface, but of light which has entered its substance, which has been reflected from surfaces within, and which, in returning _through_ the substance, has had its green extinguished. A similar process in the case of hard green leaves extinguishes the red, and sends green light from the body of the leaves to the eye. All bodies, even the most transparent, are more or less absorbent of light. Take the case of water. A glass cell of clear water interposed in the track of our beam does not perceptibly change any one of the colours of the spectrum. Still absorption, though insensible, has here occurred, and to render it sensible we have only to increase the depth of the water through which the light passes. Instead of a cell |
|