Six Lectures on Light - Delivered In The United States In 1872-1873 by John Tyndall
page 61 of 237 (25%)
page 61 of 237 (25%)
![]() | ![]() |
|
The principle of interference, as just stated, applies to the waves of
light as it does to the waves of water and the waves of sound. And the conditions of interference are the same in all three. If two series of light-waves of the same length start at the same moment from a common origin (say A, fig. 11), crest coincides with crest, sinus with sinus, and the two systems blend together to a single system (A _m_ _n_) of double amplitude. If both series start at the same moment, one of them being, at starting, a whole wavelength in advance of the other, they also add themselves together, and we have an augmented luminous effect. The same occurs when the one system of waves is any _even_ number of semi-undulations in advance of the other. But if the one system be half a wave-length (as at A' _a_', fig. 12), or any _odd_ number of half wavelengths, in advance, then the crests of the one fall upon the sinuses of the other; the one system, in fact, tends to _lift_ the particles of ether at the precise places where the other tends to _depress_ them; hence, through the joint action of these opposing forces (indicated by the arrows) the light-ether remains perfectly still. This stillness of the ether is what we call darkness, which corresponds with a dead level in the case of water. [Illustration: Fig. 12.] It was said in our first lecture, with reference to the colours produced by absorption, that the function of natural bodies is selective, not creative; that they extinguish certain constituents of the white solar light, and appear in the colours of the unextinguished light. It must at once occur to you that, inasmuch as we have in interference an agency by which light may be self-extinguished, we may have in it the conditions for the production of colour. But this would imply that certain constituents are quenched by interference, while |
|