The Chemical History of a Candle by Michael Faraday
page 38 of 119 (31%)
page 38 of 119 (31%)
|
in the bulk of the water, which shews you that its change of bulk is very
great when it becomes steam. I have put our iron bottles containing water into this freezing mixture, that you may see what happens. No communication will take place, you observe, between the water in the bottles and the ice in the outer vessel. But there will be a conveyance of heat from the one to the other; and if we are successful--we are making our experiment in very great haste--I expect you will by-and-by, so soon as the cold has taken possession of the bottles and their contents, hear a pop on the occasion of the bursting of the one bottle or the other; and, when we come to examine the bottles, we shall find their contents masses of ice, partly enclosed by the covering of iron which is too small for them, because the ice is larger in bulk than the water. You know very well that ice floats upon water: if a boy falls through a hole into the water, he tries to get on the ice again to float him up. Why does the ice float?--think of that, and philosophise. Because the ice is larger than the quantity of water which can produce it; and therefore the ice weighs the lighter, and the water is the heavier. To return now to the action of heat on water. See what a stream of vapour is issuing from this tin vessel! You observe, we must have made it quite full of steam to have it sent out in that great quantity. And now, as we can convert the water into steam by heat, we convert it back into liquid water by the application of cold. And if we take a glass, or any other cold thing, and hold it over this steam, see how soon it gets damp with water; it will condense it until the glass is warm--it condenses the water which is now running down the sides of it. I have here another experiment to shew the condensation of water from a vaporous state back into a liquid state, in the same way as the vapour, one of the products of the candle, was condensed against the bottom of the dish, and obtained in the form of |
|