The Chemical History of a Candle by Michael Faraday
page 59 of 119 (49%)
page 59 of 119 (49%)
![]() | ![]() |
|
use too small a charge, the first portion of the gas will be mixed with
the air already in the retort, and I should be obliged to sacrifice the first portion of the gas, because it would be so much diluted with air; the first portion must therefore be thrown away. You will find in this case, that a common spirit-lamp is quite sufficient for me to get the oxygen, and so we shall have two processes going on for its preparation. See how freely the gas is coming over from that small portion of the mixture. We will examine it, and see what are its properties. Now, in this way we are producing, as you will observe, a gas just like the one we had in the experiment with the battery, transparent, undissolved by water, and presenting the ordinary visible properties of the atmosphere. (As this first jar contains the air, together with the first portions of the oxygen set free during the preparation, we will carry it out of the way, and be prepared to make our experiments in a regular, dignified manner.) And, inasmuch as that power of making wood, wax, or other things burn, was so marked in the oxygen we obtained by means of the voltaic battery from water, we may expect to find the same property here. We will try it You see there is the combustion of a lighted taper in air, and here is its combustion in this gas [lowering the taper into the jar]. See how brightly and how beautifully it burns! You can also see more than this,--you will perceive it is a heavy gas, whilst the hydrogen would go up like a balloon, or even faster than a balloon, when not encumbered with the weight of the envelope. [Illustration: Fig. 22.] You may easily see that although we obtained from water twice as much in volume of the hydrogen as of oxygen, it does not follow that we have twice as much in weight--because one is heavy, and the other a very light gas. We have means of weighing gases or air; but without stopping to explain, |
|