Instructions on Modern American Bridge Building by G. B. N. (George Bates Nichols) Tower
page 30 of 57 (52%)
page 30 of 57 (52%)
|
we shall have after deducting allowances (288-128) 160 square inches
area, giving an excess over 134.4, the area demanded, sufficient to cover allowances for any accidental strain. =Upper Chords.= The upper chords are compressed as forcibly as the lower ones suffer tension--owing to the action and reaction of the diagonals. In this case the compression is 268800 lbs., and as 1 square inch of section will safely bear 1000 lbs., we have for the 268800 area required, ------ = 268.8 1000 [TeX: $\frac{268800}{1000} = 268.8$] square inches,--three pieces 8" x 11" will give 264 square inches and this area will require no reduction, as the whole chord presses together when properly framed and is not weakened by splicing. So far, the calculations made would apply to either of the three Bridges mentioned, as well as to a Warren Truss. But now, to obtain the dimensions of the web members, so called, of the Truss, it is necessary to decide upon the specific variety. The form of Bridge in more general use in the United States is called the Howe Truss, from its inventor, and in spans of 150 feet, and under, is very reliable; for spans exceeding 150 ft. it should be strengthened either by Arch Braces or by the addition of Arches, as the heavy strains from the weight of bridge and load bearing on the feet of the braces near the abutments, tend to cripple and distort the truss by sagging, although the Baltimore Bridge Co. have built a Wooden Howe Bridge of two |
|