Experimental Researches in Electricity, Volume 1 by Michael Faraday
page 153 of 785 (19%)
page 153 of 785 (19%)
![]() | ![]() |
|
water or ice, and as the vessel was four eighths of an inch in width, the
average thickness of the intervening ice was only a quarter of an inch, whilst the surface of contact with it at both poles was nearly fourteen square inches. After the water was frozen, the vessel was still retained in the frigorific mixture, whilst contact between the tin and platina respectively was made with the extremities of a well-charged voltaic battery, consisting of twenty pairs of four-inch plates, each with double coppers. Not the slightest deflection of the galvanometer needle occurred. 385. On taking the frozen arrangement out of the cold mixture, and applying warmth to the bottom of the tin case, so as to melt part of the ice, the connexion with the battery being in the mean time retained, the needle did not at first move; and it was only when the thawing process had extended so far as to liquefy part of the ice touching the platina pole, that conduction took place; but then it occurred effectually, and the galvanometer needle was permanently deflected nearly 70°. 386. In another experiment, a platina spatula, five inches in length and seven eighths of an inch in width, had four inches fixed in the ice, and the latter was only three sixteenths of an inch thick between one metallic surface and the other; yet this arrangement insulated as perfectly as the former. 387. Upon pouring a little water in at the top of this vessel on the ice, still the arrangement did not conduct; yet fluid water was evidently there. This result was the consequence of the cold metals having frozen the water where they touched it, and thus insulating the fluid part; and it well illustrates the non-conducting power of ice, by showing how thin a film could prevent the transmission of the battery current. Upon thawing parts of this thin film, at _both_ metals, conduction occurred. |
|