Scientific American Supplement, No. 829, November 21, 1891 by Various
page 8 of 146 (05%)
page 8 of 146 (05%)
|
sphere of three or four thousand stars is a task practicable only
under certain conditions. To begin with, the proper motions investigated must be established with _general_ exactitude. The errors inevitably affecting them must be such as pretty nearly, in the total upshot, to neutralize one another. For should they run mainly in one direction, the result will be falsified in a degree enormously disproportionate to their magnitude. The adoption, for instance, of system of declinations as much as 1" of arc astray might displace to the extent of 10° north or south the point fixed upon as the apex of the sun's way (see L. Boss _Astr. Jour._, No. 213). Risks on this score, however, will become less formidable with the further advance of practical astronomy along a track definable as an asymptote of ideal perfection. Besides this obstacle to be overcome, there is another which it will soon be possible to evade. Hitherto, inquiries into the solar movement have been hampered by the necessity for preliminary assumptions of some kind as to the relative distances of classes of stars. But all such assumptions, especially when applied to selected lists, are highly insecure; and any fabric reared upon them must be considered to stand upon treacherous ground. The spectrographic method, however, here fortunately comes into play. "Proper motions" are only angular velocities. They tell nothing as to the value of the perspective element they may be supposed to include, or as to the real rate of going of the bodies they are attributed to, until the size of the sphere upon which they are measured has been otherwise ascertained. But the displacement of lines in stellar spectra give directly the actual velocities relative to the earth of the observed stars. The question of their distances is, therefore, at once eliminated. Now the radial component of stellar motion is mixed up, precisely in the same |
|