Scientific American Supplement, No. 829, November 21, 1891 by Various
page 81 of 146 (55%)
page 81 of 146 (55%)
![]() | ![]() |
|
reflection, objects lying on one's right hand. Below this is a second
prism with a principal angle of 88 deg. 51 min. 15 sec., and below this a third with a principal angle of 74 deg. 53 min. 15 sec. A level and a compass are also mounted on the lid as shown. To use the instrument the observer stands so that the object the range of which is required lies on his right hand, and looking into the left-hand corner of the upper prism views it there by double reflection from the internal faces of the prism. At the same time looking through the opening shown in the lid below the prism he selects some object, which appears nearly in line with the image seen in the prism. He then shifts his position till these two images coincide, in which case lines joining him with the two objects will make right angles with each other. In Fig. 2, O is the object whose range is required, D the object seen by direct vision, and A the position of the observer. The observer now marks his position on the ground, and shifting the instrument looks into the left-hand corner of the second prism, when he again sees the image of the object, whose range is required, by double reflection, but lying now to the right of the object, D. He then retires, keeping in line with A and D, till he reaches B, when the two images again coincide; the lines joining them and the observer now make an angle of 88 deg. 51 min. 15 sec. Then in the triangle, OBA, OA = tan 88 deg. 51 min. 15 sec. X A B = 50 AB. The length AB is easily paced, and the distance OA is 50 times this length. A longer base, and probably greater accuracy, can be obtained by using the second prism only, as indicated in Fig. 3, in which case the distance of the object is 25 times the distance BC. This second prism is, however, best adapted for predicting the range of moving objects. Three observers are required. Two of them have finders, while the |
|