Scientific American Supplement, No. 841, February 13, 1892 by Various
page 51 of 162 (31%)
page 51 of 162 (31%)
![]() | ![]() |
|
|
centimeters by forty centimeters were placed in the soil. These plates
were alternately of zinc and copper and placed about thirty meters apart, connected two and two, by a wire. The result was to increase from twofold to fourfold the production of certain garden plants. Mr. Fischer says that it is evidently proved that electricity aids in the more complete breaking up of the soil constituents. Finally he says that plants thus treated mature more quickly, are almost always perfectly healthy, and are not affected with fungoid growth. Later, N. Specnew, inspired by the results arrived at by his predecessors, was led to investigate the influence of electricity on plants in every stage of their development; the results of his experiments were most satisfactory and of practical interest. He began by submitting different seeds to the action of an electric current, and found that their development was rendered more rapid and complete. He experimented with the seeds of haricot beans, sunflowers, winter and spring rye. Two lots, of twelve groups of one hundred and twenty seeds each, were plunged into water until they swelled, and while wet the seeds were introduced into long glass cylinders, open at both ends. Copper disks were pressed against the seeds, the disks were connected with the poles of an induction coil, the current was kept on for one or two minutes and immediately afterward the seeds were sown. The temperature was kept from 45° to 50° Fahrenheit, and the experiments repeated four times. The following table shows the results: Peas. Beans. Barley. Sunflowers. Days. Days. Days. Days. Electrified seeds developed in 2.5 3 2 8.5 Non-electrified seeds developed in 4 6 5 15 |
|


