Cyclopedia of Telephony & Telegraphy Vol. 1 - A General Reference Work on Telephony, etc. etc. by Robert Millikan;Samuel McMeen;George Patterson;Kempster Miller;Charles Thom
page 128 of 497 (25%)
page 128 of 497 (25%)
![]() | ![]() |
|
|
before casting into the form of plates or rods.
Series and Multiple Connections. When a number of voltaic cells are joined in series, the positive pole of one being connected to the negative pole of the next one, and so on throughout the series, the _electromotive forces_ of all the cells are added, and the electromotive force of the group, therefore, becomes the sum of the electromotive forces of the component cells. The currents through all the cells in this case will be equal to that of one cell. If the cells be joined in multiple, the positive poles all being connected by one wire and the negative poles by another, then the _currents_ of all the cells will be added while the electromotive force of the combination remains the same as that of a single cell, assuming all the cells to be alike in electromotive force. Obviously combinations of these two arrangements may be made, as by forming strings of cells connected in series, and connecting the strings in multiple or parallel. The term battery is frequently applied to a single voltaic cell, but this term is more properly used to designate a plurality of cells joined together in series, or in multiple, or in series multiple so as to combine their actions in causing current to flow through an external circuit. We may therefore refer to a battery of so many cells. It has, however, become common, though technically improper, to refer to a single cell as a battery, so that the term battery, as indicating necessarily more than one cell, has largely lost its significance. |
|


