Cyclopedia of Telephony & Telegraphy Vol. 1 - A General Reference Work on Telephony, etc. etc. by Robert Millikan;Samuel McMeen;George Patterson;Kempster Miller;Charles Thom
page 79 of 497 (15%)
page 79 of 497 (15%)
![]() | ![]() |
|
| 14 N. B. S. copper | 240 miles |
| 8 B. W. G. iron | 135 miles | | 10 B. W. G. iron | 120 miles | | 12 B. W. G. iron | 90 miles | | 16 B. & S. cable, copper | 40 miles | | 19 B. & S. cable, copper | 30 miles | | 22 B. & S. cable, copper | 20 miles | +-----------------------------+----------------------+ In 1893, Oliver Heaviside proposed that the inductance of telephone lines be increased above the amount natural for the inter-axial spacing, with a view to counteracting the hurtful effects of the capacity. His meaning was that the increased inductance--a harmful quality in a circuit not having also a harmfully great capacity--would act oppositely to the capacity, and if properly chosen and applied, should decrease or eliminate distortion by making the line's effect on fundamentals and harmonics more nearly uniform, and as well should reduce the attenuation by neutralizing the action of the capacity in dissipating energy. There are two ways in which inductance might be introduced into a telephone line. As the capacity whose effects are to be neutralized is distributed uniformly throughout the line, the counteracting inductance must also be distributed throughout the line. Mere increase of distance between two wires of the line very happily acts both to increase the inductance and to lower the capacity; unhappily for practical results, the increase of separation to bring the qualities into useful neutralizing relation is beyond practical limits. The wires would need to be so far above the earth and so far apart as to make the arrangement commercially impossible. |
|