Recreations in Astronomy - With Directions for Practical Experiments and Telescopic Work by Henry White Warren
page 60 of 249 (24%)
page 60 of 249 (24%)
![]() | ![]() |
|
stars. The correction of an inaccuracy of no greater magnitude than
that has reduced our estimate of the distance of our sun 3,000,000 miles. [Illustration: Fig. 21.--Mural Circle.] Consider the nicety of the work. Suppose the graduated scale to be thirty feet in circumference. Divided into 360°, each would be one inch long. Divide each degree into 60', each one is 1/60 of an inch long. It takes good eyesight to discern it. But each minute must be [Page 62] divided into 60", and these must not only be noted, but even tenths and hundredths of seconds must be discerned. Of course they are not seen by the naked eye; some mechanical contrivance must be called in to assist. A watch loses two minutes a week, and hence is unreliable. It is taken to a watch-maker that every single second may be quickened 1/20160 part of itself. Now 1/20000 part of a second would be a small interval of time to measure, but it must be under control. If the temperature of a summer morning rises ten or twenty degrees we scarcely notice it; but the magnetic tastimeter measures 1/5000 of a degree. Come to earthly matters. In 1874, after nearly twenty-eight years' work, the State of Massachusetts opened a tunnel nearly five miles long through the Hoosac Mountains. In the early part of the work the engineers sunk a shaft near the middle 1028 feet deep. Then the question to be settled was where to go so as to meet the approaching excavations from the east and west. A compass could not be relied on under a mountain. The line must be mechanically fixed. A little divergence at the starting-point would become so great, miles away, that the excavations might pass each other without meeting; the |
|