Recreations in Astronomy - With Directions for Practical Experiments and Telescopic Work by Henry White Warren
page 95 of 249 (38%)
page 95 of 249 (38%)
![]() | ![]() |
|
mighty mountains of Moab removed to reveal the stars of the east.
Train the telescope on any star; it must be moved frequently, or the world will roll the instrument away from the object. Suspend a cannon-ball by a fine wire at the equator; set it vibrating north and south, and it swings all day in precisely the same direction. But suspend it directly over the north pole, and set it swinging toward Washington; in six hours after it is swinging toward Rome, in Italy; in twelve hours, toward Siam, in Asia; in nineteen hours, toward the Sandwich Islands; and in twenty-four, toward Washington again, not because it has changed the plane of its vibration, but because the earth has whirled beneath it, and the torsion of the wire has not been sufficient to compel the plane of the original direction to change with the turning of the earth. The law of inertia keeps it moving in the same direction. The same experimental proof of revolution is shown in a proportional degree at any point between the pole and the equator. But the watchers on the Acropolis do not get turned over so as to see the moon at the same time every night. [Page 110] We turn down our eastern horizon, but we do not find fair Luna at the same moment we did the night before. We are obliged to roll on for some thirty to fifty minutes longer before we find the moon. It must be going in the same direction, and it takes us longer to get round to it than if if it were always in the same spot; so we notice a star near the moon one night--it is 13° west of the moon the next night. The moon is going around the earth from west to east, and if it goes 13° in one day, it will take a little more than twenty-seven days to go the entire circle of 360°. [Illustration: Fig. 42.--Showing the Sun's Movement among the Stars.] |
|