The Future of Astronomy by Edward Charles Pickering
page 14 of 18 (77%)
page 14 of 18 (77%)
|
What has been said of the motions of the stars applies also, in general, to the determination of their distances. A vast amount of labor has been expended on this problem. When at length the distance of a single star was finally determined, the quantity to be measured was so small as to be nearly concealed by the unavoidable errors of measurement. The parallax, or one half of the change in the apparent position of the stars as the earth moves around the sun, has its largest value for the nearest stars. No case has yet been found in which this quantity is as large as a foot rule seen at a distance of fifty miles, and for comparatively few stars is it certainly appreciable. An extraordinary degree of precision has been attained in recent measures of this quantity, but for a really satisfactory solution of this problem, we must probably devise some new method, like the use of the spectroscope for determining motions. Two or three illustrations of the kind of methods which might be used to solve this problem may be of interest. There are certain indications of the presence of a selective absorbing medium in space. That is, a medium like red glass, for instance, which would cut off the blue light more than the red light. Such a medium would render the blue end of the spectrum of a distant star much fainter, as compared with the red end, than in the case of a near star. A measure of the relative intensity of the two rays would servo to measure the distance, or thickness of the absorbing medium. The effect would be the same for all stars of the same class of spectrum. It could be tested by the stars forming a cluster, like the Pleiades, which are doubtless all at nearly the same distance from us. The spectra of stars of the tenth magnitude, or fainter, can be photographed well enough to be measured in this way, so that the relative distances of nearly a million stars could be thus determined. |
|