Scientific American Supplement, No. 794, March 21, 1891 by Various
page 10 of 146 (06%)
page 10 of 146 (06%)
|
diameter.
A 42 in. wheel with 4 in. journal has a greater leverage wherewith to overcome the resistance of journal friction than the 38 in. wheel with the same journal, and even more than the 36 in. and 33 in. wheels with 33/4 in. and 31/2 in. journals respectively, but the fact remains that the same amount of work has to be done in overcoming the friction in each case, and what may be gained in ease of starting with the large wheel is lost in time necessary to do it, and in the extra weight put into motion. A large wheel increases the liability to bent axles in curving on account of greater leverage unless the size and weight of the axle are increased to correspond, and the wheel itself must be made stronger. A four or six wheel truck will not retain its squareness and dependent good riding qualities so well with 42 in. wheels as with 33 in. ones. Besides the brakes, the pipes for air and steam under the cars interfere with large wheels, and as a consequence of all this 42 in. wheels have been replaced by 36 in. ones to some extent in some places with satisfactory results. On one road in particular so strong is the inclination away from large wheels that 30 in. is advocated as the proper size for passenger cars. On the other hand, there is no doubt a car wheel may be too small, for the tires of small wheels probably do not get as much working up under the rolls, and therefore are not as tough or homogeneous. Small wheels are more destructive to frogs and rail joints. They revolve faster at a given speed, and when below a certain size increase the liability to hot journals if carrying the weight they can bear without detriment to the rest of the wheel. Speed alone I am not willing to admit is the |
|