Scientific American Supplement, No. 794, March 21, 1891 by Various
page 15 of 146 (10%)
page 15 of 146 (10%)
|
further lighten greatly the graphical work in the treatment of masonry
arches and of metal ribs. In graphical hydrostatics it finds centers of pressure and gives a complete solution for the shear and bending moment, curves in ships, besides curves for their stability. In graphical dynamics the applications of the integraph seem still more numerous. It enables us to pass from curves of acceleration to curves of speed, and from curves of speed to curves of position. Applied to the curve of energy of either a particle or the index point of a rigid body, it enables us by the aid of easy auxiliary processes to ascertain speeds and curves of action. In a slightly altered form, that of "inverse summation," we can pass from curves of action to curves of position, and deal with a great range of resisted motions, the analysis of which still puzzles the pure mathematician; the variations of motion in flywheels, connecting rods, and innumerable other parts of mechanism, may all be calculated with much greater ease by the aid of an integraph. Shortly, it is the fundamental instrument of graphic dynamics. It would be needless to further multiply the instances of its application; the questions we have rather to ask are: Can a practical instrument be made which will serve all these purposes? Has such an instrument been already put upon the market? If I have to answer these questions in the negative, it is rather a doubtful negative, for the instrument I have to show you to-night goes so far, and suggests so many modifications and possibilities, which would take it so much further, that it is very close to bringing the practical solution to the problem. Let me here lay down the conditions which seem essential to a practical integraph. These are, I think, the following: |
|