Scientific American Supplement, No. 794, March 21, 1891 by Various
page 20 of 146 (13%)
page 20 of 146 (13%)
|
I next turn to its construction and the claim it has to be considered in any way new. Let me briefly remind our members of the process by which an element Q R of the sum curve (Fig. 1) corresponding to the point P on the primitive is drawn; P M being the mid-ordinate of L N, a horizontal element, P B is drawn perpendicular to any vertical line A B; and O A being a constant distance termed the base or "polar distance," Q R is drawn between the ordinates of L and W, parallel to O B. If P' be the point where P M meets Q R, we note the following relationship of P' to P. 1. If P moves along a horizontal line, O B remains unchanged, and, therefore, Q R or P' must move in the straight line Q R parallel to O B. 2. If P moves along a vertical line, P' does not change, but Q R turns round it, remaining parallel to O B. [Illustration: FIG. 1, 2, 3] Without taking the trouble, as I ought to have done, to inquire what previous investigations had achieved in this matter, I thought, three years ago, I could get an apparatus to save me the trouble of drawing sum curves, made somewhat after the following fashion. P (Fig. 2) is the guide or point to be taken round the primitive. It is attached to a block, D, which works along the bar, B C, which in its turn moves on the four wheels, e e f f, upon the frame R S U T fixed upon the drawing board. O A is fixed perpendicular to R U, and is such that O may be fixed at various points to determine the polar |
|