Scientific American Supplement, No. 794, March 21, 1891 by Various
page 60 of 146 (41%)
page 60 of 146 (41%)
|
At Fort Wagner, a sand work built during our war, Gen. Gillmore
estimated that he threw one pound of metal for every 3.27 pounds of sand removed. He fired over 122,230 pounds of metal, and one night's work would have repaired the damage. The new fifteen inch pneumatic shell will contain 600 pounds of blasting gelatine, and judging from the German experiments at Kummsdorf, which I have cited, one of these fifteen inch shells would throw out a prodigious quantity of sand; either 500 pounds to one of shell, or 2,000 pounds to one of shell, according as the estimate of Gen. Abbot or of Capt. Zalinski is used. The former considers that the radius of destructive effect increases as the square root of the charge; the latter that the area of destructive effect for this kind of work is directly proportional to the charge. The effect of the high explosives upon horizontal armor is very great; but we have yet to learn how to make it shatter vertical armor. No fact about high explosives is more curious than this, and there is no theory to account for it satisfactorily. As previously stated, the French have found that four inches of vertical armor is ample to keep out the largest melenite shells, and experiments at Annapolis, in 1884, showed that masses of dynamite No. 1, weighing from seventy-five to 100 pounds, could be detonated with impunity when hung against a vertical target composed of a dozen one inch iron plates bolted together. In conclusion, I may say that in this country we are prone to think that the perfection of the methods of throwing high explosives in shell is vastly in favor of an unprotected nation like ourselves, because we could easily make it very uncomfortable for any vessels that might attempt to bombard our sea coast cities. |
|