Scientific American Supplement, No. 794, March 21, 1891 by Various
page 89 of 146 (60%)
page 89 of 146 (60%)
![]() | ![]() |
|
The above is an analysis of water gas made from ordinary gas coke in a Van Steenbergh generator. The ratio of carbon monoxide and carbon dioxide present entirely depends upon the temperature of the generator, and the kind of carbonaceous matter employed. With a hard, dense anthracite coal, for instance, it is quite possible to attain a temperature at which there is practically no carbon dioxide produced, while with an ordinary form of generator and a loose fuel like coke, a large proportion of carbon dioxide is generally to be found. The sulphureted hydrogen in the analysis quoted is, of course, due to the high amount of sulphur to be found in the gas coke, and is practically absent from water gas made with anthracite, while the nitrogen is due to the method of manufacture, the coke being, in the first instance, raised to incandescence by an air blast, which leaves the generator and pipes full of a mixture of nitrogen and carbon monoxide (producer gas), which is carried over by the first portions of water gas into the holder. The water gas so made has no photometric value, its constituents being perfectly non-luminous, and attempts to use it as an illuminant have all taken the form of incandescent burners, in which thin mantles or combs of highly refractory metallic oxides have been heated to incandescence. In carbureted water gas this gas is only used as the carrier of illuminating hydrocarbon gases, made by decomposing various grades of hydrocarbon oils into permanent gases by heat. Many forms of generator have been used in the United States for the production of water gas, which, after or during manufacture, is mixed |
|