Scientific American Supplement, No. 441, June 14, 1884. by Various
page 102 of 155 (65%)
page 102 of 155 (65%)
![]() | ![]() |
|
bismutic acid. The latter is deposited at the positive pole, and in
thin layers appears of a golden-yellow, but in thick strata is darker, approaching to red. Its formation is very gradual, and in time it disappears again, owing to secondary actions of the current. On ignition it becomes lemon yellow, and transitorily darker, even brown, and passes into the sexquioxide. _Nickel and Cobalt._--On the electrolysis of the ammonical solution the sesquioxide appears at the positive pole. Its formation is prevented by an excess of ammonia. The author never obtains more than 3½ per cent. of the quantity of the metal. The sesquioxides dissolve in ammonia without escape of nitrogen, and are usually anhydrous. _Manganese._--Manganese is the only metal which is precipitated only as peroxide. It is deposited at once on closing the circuit, and is at first brown, then black and shining. Organic acids, ferrous oxide, chromic oxide, ammonium salts, etc., prevent the formation of peroxide and the red color produced by permanganic acid. In very dilute strongly acid nitric solutions there is formed only permanganic acid, which according to Riche is plainly visible in solutions containing 1/1000000 grm. manganese. On electrolyzing a manganiferous solution of copper nitrate, red permanganic acid appeared in a stratum floating above the platinum disk coated with brown peroxide. No manganese peroxide was deposited. The peroxide adheres firmly to the platinum when the proportion of free acid is small, not exceeding 3 per cent., and the current is not too strong. If the action of the current is prolonged after the peroxide is thrown down, it falls off in laminæ. According to Riche, in a nitric solution the manganese is deposited as peroxide, also at the negative pole. This formation is not directly due to the current, but is a precipitate occasioned by the production |
|